

Relations & Functions- L1: Relation

JEE Main / 11th Math

Apr 8th Strategy Class 11th Math

Apr 9th Sequences & Series-L1: Arithmetic Progression

Apr 10th Sequences & Series-L2: Geometric Progression

Apr 11th Sequences & Series-L3: AM GM HM

Apr 13th Sequences & Series-L4: AGP and Sum of Series

Apr 14th Sequences & Series-L5: Method of Difference

Apr 15th Sequences & Series-L6: NCERT Most Important Qs

Apr 16th Sets - L1 : Basics & Algebra of Sets- 1

Apr 17th Sets - L2 : Basics & Algebra of Sets- 2

JEE Main / 11th Math

From Apr 9th - Apr 30th @12 PM

Apr 20th Relations & Functions-L1: Relation

Apr 21st Relations & Functions - L2 : Basic of Function

Apr 22nd Relations & Functions - L3: Types of Functions

Apr 23rd Relations & Functions- L4 : Domain & Range of a Function

Apr 24th Relations & Functions- L5: Inverse of a Function

Apr 25th Relations & Functions- L6 : Greatest Integer & Modulus Functions

Apr 27th Complex Numbers - L1 : Basics of Complex Number

Apr 28th Complex Numbers - L2 : Algebra of Complex Numbers

Apr 29th Complex Numbers - L3 : The Modulus and the Conjugate of a Complex Number

Apr 30th Complex Numbers - L4 : Argand Plane and Polar Representation

Step 1: Visit

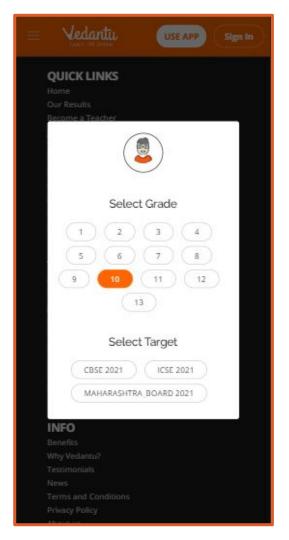
https://vdnt.in/YTLIVE &

tap on "Learn for FREE"

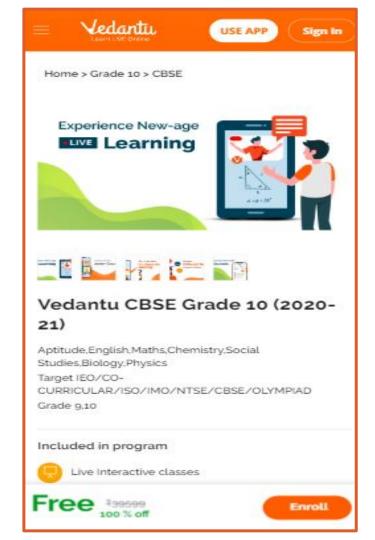
How Vedantu's LIVE & ONLINE learning can be of support during Corona virus outbreak?

Free Access to LIVE Classes & Content of Vedantu for Grades 1 to 12, JEE & NEET

Hello Parents,


Amidst the Coronavirus outbreak, schools & colleges are being shut down as a precautionary measure. We understand students in these affected areas need academic support. The best way to prevent netting.

Live classes . Test series Doubts . Study Material


Step 2: Select your grade & target exam to discover all our premium courses.

Step 3: Click on Enroll.

We have facilitated this service for students of **Grades 1 - 12** covering all major subjects*.

INVITE YOUR FRIENDS &

Experience the New-Age of Learning from the Safety of your Home

Vedantu JEE 2022 Program

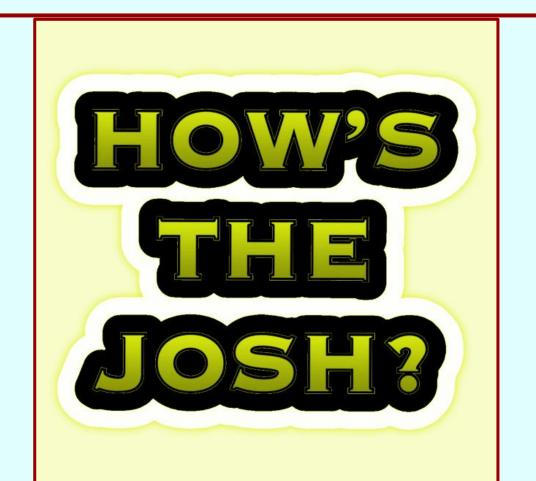
<u>-FEATURES-</u>

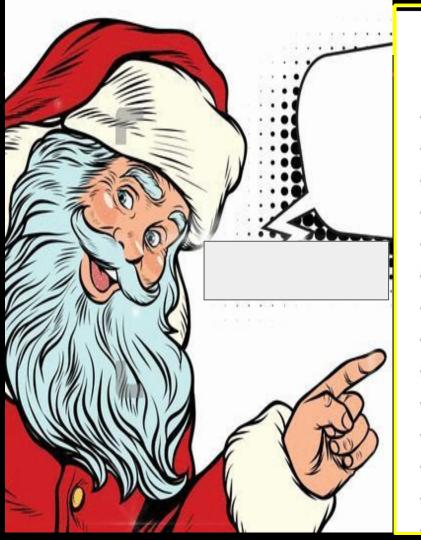
- → 4000+ hours of LIVE online teaching
- → 40+ Teachers; from Top IITs and 10+ years experience
- → 750 Tests & 3000 Assignments for Practical Application
- → Instant Doubt Solving By Academic Mentors
- → Replay/Recording of Classes If You've Missed
- → Rank Booster Quizzes
- → **Previous Paper** Analysis

Boost your learning with Vedantu Pro

vdnt.in/YTJEE22

Enroll for FREE




- ➤ Chat with teachers
 ➤ Discussions
- >Polls >Assignments
- >Know about the session before it goes live

URL: https://t.me/joinchat/NgOcO1TLwvLLxl5H_YjNkA

{things-to-do}

Cartesian Product

Relation

No. of Relations

Domain

Range

CARTESIAN PRODUCT

Ordered Pair

If a is an arbitrary element from set A and b is an arbitrary element from set B then, the pair (a, b) is called an **ordered pair**

Note: $(a, b) \neq (b, a)$ Unless a = b

Cartesian product

The Cartesian product of two sets A, B is the set of all possible ordered pairs (a, b) such that $a \in A$ and $b \in B$

The Cartesian product for A and B is represented with " $A \times B$ "

$$A \times B = \{ (a, b) : a \subseteq A, b \subseteq B \}$$

$$A = \{ 1, 2, 3 \}$$
 $B = \{ l, m \}$
 $A \times B =$

Question

If $A = \{1, 2, 3\}$, find $A \times A$

Question

If $A = \{1, 2, 3\}$, find $A \times A$

Solution $A = \{1, 2, 3\}$

$$A \times A = \left\{ (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3) \right\}$$

Question

If
$$A = \{2, 5\}$$
 $B = \{3, 4, 7\}$ $C = \{3, 4, 8\}$
Prove (i) $A \times (B \cup C) = (A \times B) \cup (A \times G)$
(ii) $(A - B) \times C = (A \times C) - (B \times C)$

Question

If
$$A = \{2, 5\}$$
 $B = \{3, 4, 7\}$ $C = \{3, 4, 8\}$
Prove (i) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
(ii) $(A - B) \times C = (A \times C) - (B \times C)$

Solution

(B
$$\cup$$
 C) = {3, 4, 7,
 \mathbb{A} } × (B \cup C) = {(2, 3), (2, 4), (2, 7), (2, 8),
(5, 3), (5, 4), (5, 7) (5, 8)}

Question

If $A = \{2, 5\}$ $B = \{3, 4, 7\}$ $C = \{3, 4, 8\}$ Prove (i) $A \times (B \cup C) = (A \times B) \cup (A \times C)$ (Gi) $(A - B) \times C = (A \times C) - (B \times C)$

Solution

$$A \times B = \{(2, 3), (2, 4), (2, 7), (5, 3), (5, 4), (5, 7)\}$$

$$A \times (B \cup C) = \{(2, 3), (2, 4), (2, 7), (2, 8)\}$$

$$A \times C = \{(2,3), (2,4), (2,8), (5,3), (5,4), (5,8)\}$$

$$\{(2,3), (2,4), (2,7), (2,8), (5,3), (5,4), (5,7), (5,8)\}$$

RELATION

Pointing to a photograph of a boy Suresh said,

"He is the son of the only son of my mother."

How is Suresh related to that boy?

Let's understand this concept with an example

Real Life examples: (Teacher, Student), (Husband, Wife), (Mother, Son), (Brother, Sister)

Math examples: $(a \perp b)$, (9 > 2), (line p II line q).

NOTE : Relation is always in pairs

Relation

A, B are two sets, any Relation R from A to B is a subset of A \times B. If $(x, y) \in \mathbb{R}$, we say that "x is R - related to y" and represent it with "x R y".

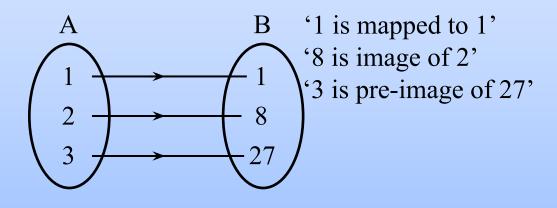
$$\therefore \mathbf{R} = \{(x, y) : x \in \mathbf{A}, y \in \mathbf{B}, x \mathbf{R}\}$$

For example

if
$$A = \{1, 2, 3\}$$
 and $B = \{1, 8, 27\}$
 $A \times B = \{(1, 1), (1, 8), (1, 27), (2, 1), (2, 8),$
 $(2, 27) (3, 1), (3, 8), (3, 27)\}$

Relationship is cube.

R =



Venn representation of relation

$$A = \{1, 2, 3\} B = \{1, 8, 27\}$$

$$R = \{(1, 1), (2, 8) (3, 27)\}$$

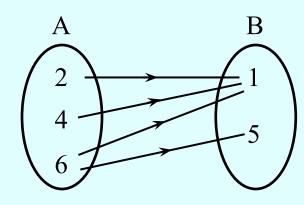
 $R : A \rightarrow B$ (To be read as R : A mapping B)

Question

 $A = \{ 2, 4, 6 \}$ $B = \{ 1, 5 \}$ A relation $R : A \rightarrow B$ is defined as

$$R = \{(x, y) : x \in A, y \in B \text{ and } x > A \in A, y \in B \text{ and } x > A \in A, y \in B \text{ and } x > A \in A, y \in B \text{ and } x > A \in A, y \in B \text{ and } x > A \in A, y \in B \text{ and } x > A \in A, y \in B \text{ and } x > A \in A, y \in B \text{ and } x > A \in A, y \in B \text{ and } x > A \in A, y \in B \text{ and } x > A \in A, y \in B \text{ and } x > A \in A, y \in B \text{ and } x > A \in A, y \in B \text{ and } x > A \in A, y \in B \text{ and } x > A \in A, y \in B \text{ and } x > A \in A, y \in B \text{ and } x > A \in A, y \in B \text{ and } x > A \in A, y \in B \text{ and } x > A \in A, y \in B \text{ and } x > A \in A, y \in B, x > A \in A, x > A, x > A \in A, x > A, x$$

Question


 $A = \{ 2, 4, 6 \}$ B = $\{ 1, 5 \}$ A relation R : A \rightarrow B is defined as

$$R = \{(x, y) : x \in A, y \in B \text{ and } x > a$$

Solution $A = \{2, 4, 6\}$ $B = \{1, 5\}$

$$A \times B = \{(2, 1), (2, 5), (4, 1), (4, 5), (6, 1), (6, 5)\}$$

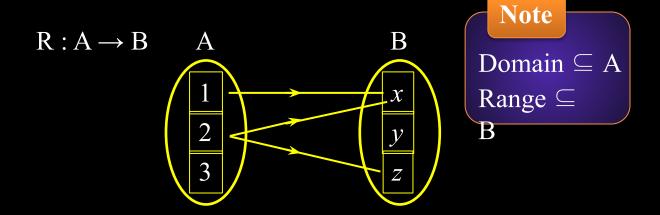
$$R = \{(2, 1), (4, 1), (6, 1), (6, 5)\}$$

DOMAIN AND RANGE OF A RELATION

Domain of a relation

If R is the relation from A to B i.e $R \subseteq A \times B$, then the set of all first elements in ordered pairs in R is called Domain of R

Domain of
$$R = \{x : (x, y) \in R\}$$



Range of a relation

If R is the relation from A to B i.e $R \subseteq A \times B$, then the set of all second elements in ordered pairs in R is called Range of R

Range of $R = \{y : (x, y) \in R\}$

Domain of R = Range of R =

Question

Find domain and range of relation

$$R = \{(x, y) : x, y \in \mathbb{N}, y = x^2 + 3, 0 < x < 5\}$$

Question

Find domain and range of relation

$$R = \{(x, y) : x, y \in \mathbb{N}, y = x^2 + 3, 0 < x < 5\}$$

Solution

$$R = \{(1, 1^2 + 3), (2, 2^2 + 3), (3, 3^2 + 3), (4, 4^2 + 3)\}$$

$$R = \{(1, 4), (2, 7), (3, 12), (4,19)\}$$

Domain of
$$R = \{1, 2, 3, 4\}$$

Range of
$$R = \{4, 7, 12, 19\}$$

Question

If a relation R is defined on set of Natural numbers,

$$R = \{(x, y): x \in \mathbb{N}, y \in \mathbb{N}, 5x + y = 41\}.$$
 Find range of R

Question

If a relation R is defined on set of Natural numbers,

$$R = \{(x, y): x \in \mathbb{N}, y \in \mathbb{N}, 5x + y = 41\}$$
. Find range of R

Solution

$$y = 41 - 5x$$

If $x = 1 \Rightarrow y = 36$

If $x = 2 \Rightarrow y = 31$

If $x = 3 \Rightarrow y = 26$

If $x = 4 \Rightarrow y = 21$

If $x = 5 \Rightarrow y = 16$

If $x = 6 \Rightarrow y = 11$

If
$$x = 7 \Rightarrow y = 6$$

If $x = 8 \Rightarrow y = 1$

If $x = 9 \Rightarrow y \notin N$

$$\Rightarrow$$
 Range $\{1, 6, 11, 16, 21, 26, 31, 36\}$

Number of Relations

Number of Relations

If n(A) = p, n(B) = q, then number of relations from A to $B = 2^{pq}$

Proof

Every relation R : $A \rightarrow B$ is subset of $A \times B$

No. of relations possible = number of subsets of $A \times B$

$$n (A \times B) = n (A) \times n (B)$$
$$= pq$$

Number of relations = 2^{pq}

INVERSE OF A RELATION

Inverse of Relation

If a relation R is from set A to set B, then inverse of relation R is

$$R^{-1} = \{(y, x) : \forall (x, y)\}$$

For example

If
$$R = \{(2,4),(3,9),(4,16)\}$$
 then,

$$R^{-1} = \{(4,2),(9,3),(16,4)\}$$

Question

A relation R : N \rightarrow N is defined as R = { $(x, y), x \in \mathbb{N}, y \in \mathbb{N} \& y = 35 - x^3$ }. Find domain and range of R⁻¹

Question

A relation R : N \rightarrow N is defined as R = { $(x, y), x \in N, y \in N$ &

$$y = 35 - x^3$$
. Find domain and range of R⁻¹

Solution

$$y = 35 - x^{3}$$

$$x = 1 \Rightarrow y = 34$$

$$x = 2 \Rightarrow y = 27$$

$$x = 3 \Rightarrow y = 8$$

$$x = 4 \Rightarrow y \notin \mathbb{N}$$

 $\therefore R = \{(1,34)(2,27),(3,8)\}$

$$\therefore R^{-1} = \{(34,1)(27,2),(8,3)\}$$
Domain of $R^{-1} = \{34,27,8\}$

Range of $R^{-1} = \{1, 2, 3\}$

JEE Mains Crash Course

<u>-FEATURES-</u>

- → 90 Live Classes By Best Teachers
 - o 3 sessions everyday Mon to Sat for 6 weeks
- → 20+ Comprehensive Tests; Assignments & Detailed Analysis
- → **Doubt Solving** By Academic Mentors
- → Replay/Recording of Classes If You've Missed
- → Important **Tips & Tricks** To Crack JEE
- → In class Rank Booster Quizzes
- → **Previous Paper** Analysis

Lightning Deal: ₹ 24999 → ₹ 5999

Use Coupon Code: NAGCC
Buy Now @ https://vdnt.in/JEECCE

Visit the <mark>link</mark> mentioned below

https://vdnt.in/JEECCE

ENROLL NOW

Step-1:

Click on "ENROLL NOW"

<u>Step -2:</u>

Click on "I have a coupon code"

Step-3:

Apply Coupon NAGCC

JEE (Main) 2018

Q. Two sets A and B are as under:

$$A = \{(a, b) \in R \times R : |a - 5| < 1 \text{ and } |b - 5| < 1\};$$

B = {(a, b)
$$\in$$
 R x R : 4(a - 6)² + 9(b - 5)² \le 36}. Then :

- A neither $A \subseteq B$ nor $B \subseteq A$
- $\mathsf{B} \subset \mathsf{A}$
- $C A \subset B$
- $A \cap B = 4φ$ (an empty set)

Q. Two sets A and B are as under:

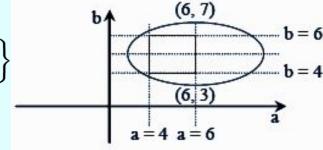
$$A = \{(a, b) \in R \times R : |a - 5| < 1 \text{ and } |b - 5| < 1\};$$

B = {(a, b)
$$\in$$
 R x R : 4(a - 6)² + 9(b - 5)² \leq 36}. Then :

neither $A \subseteq B$ nor $B \subseteq A$

 $B \subset A$ B

JEE (Main) 2018


 $A \subset B$

 $A \cap B = 4\phi$ (an empty set) D

Solution:
$$A=ig\{(a,b):a\in(4,6),\ b\,(4,6)ig\}$$

$$B = \left\{ (a,b) : 4(a-6)^2 + 9(b-5)^2 \le 36
ight\}$$

$$\Rightarrow \frac{(a-6)^2}{9} + \frac{(b-5)^2}{4} \le 1$$
$$\Rightarrow A \subset B$$

- **Q.** Let $A = \{1,2,3,4,6\}$ and R be the relation on A defined by $\{(a,b) : a,b \in A,b \}$ is exact divisible by a $\{(a,b) : a,b \in A,b \}$
 - 1) Write R is roster form
- 2) Find the domain of R
- 3) Find the range of R

Solution:

```
A = \{1, 2, 3, 4, 6\}
R = \{(a, b) : a, b \in A, b \text{ is exactly divisible by a}\}
(i) R = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6)\}
(ii) Domain of R = \{1, 2, 3, 4, 6\}
(iii) Range of R = \{1, 2, 3, 4, 6\}
```


Q. If a relation R is defined from a set A = $\{2,3,4,5\}$ to a set B = $\{3,6,7,10\}$ as follows $(x,y) \in R \Leftrightarrow x \text{ divides y.Expression of R}^{-1}$ is represented by

- **A** {(6,2), (10,2), (3,3), (6,3)}
- **B** {(6,2), (3,3),(10,5),(10,2)}
- **c** {(6,2), (10,2), (3,3),(6,3),(10,5)}
- None of these

Q. If a relation R is defined from a set A = $\{2,3,4,5\}$ to a set B = $\{3,6,7,10\}$ as follows $(x,y) \in R \Leftrightarrow x$ divides y.Expression of R^{-1} is represented by

- **A** {(6,2), (10,2), (3,3), (6,3)}
- **B** {(6,2), (3,3),(10,5),(10,2)}
- (6,2), (10,2), (3,3),(6,3),(10,5)
 - None of these

Solution:

```
R 	o (a,b)
a divides b
Let
(i)a = 2
                                 (ii)a = 3
b = 6, 10
                                     b = 3, 6
(iii) a = 4
                                  (iv)a = 5
                                      b = 10
b = \phi
                                       (5, 10)
\therefore R = \{(2,6), (2,10), (3,3), (3,6), (5,10)\}
R^{-1} = \{(6,2), (10,2), (3,3), (6,3), (10,5)\}
```


Q. Let n(A) = 8 and n(B) = p. Then ,the total number of non-empty relations that can be defined from A to B is

- **A** 8^p
- **B** n^p 1
- **c** 8p 1
- **D** 2^{8p} 1

Q. Let n(A) = 8 and n(B) = p. Then ,the total number of non-empty relations that can be defined from A to B is

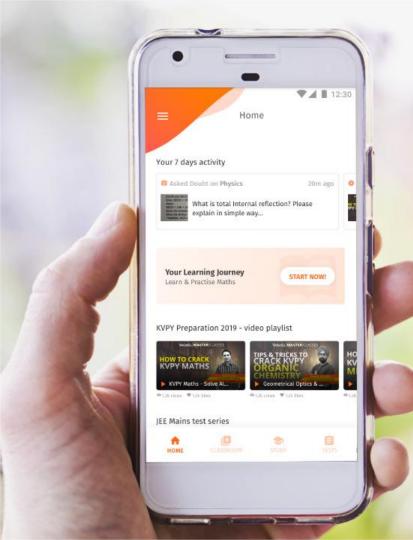
- **A** 8^p
- **B** n^p 1
- **c** 8p 1
- 2^{8p} 1

Solution:

We have,

$$n(A) = 8, n(B) = p$$

$$\therefore n(A \times B) = n(A). n(B)$$


$$=8p$$

Total number of relations from A to B

= Number of subsets of
$$A \times B = 2^{8p}$$

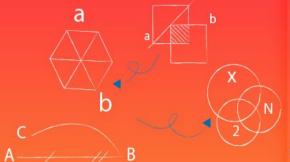
$$\therefore$$
 Total number of non - empty relations = $(2^{8p} - 1)$

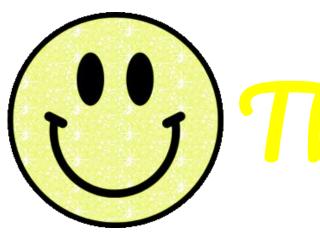
Download Vedantu's **LEARNING APP**

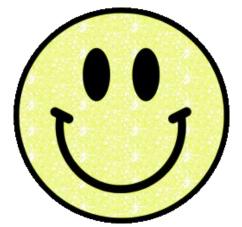
by Top Teachers

FREE Study Materials Free Access to
EXCLUSIVE MasterClasses

Practise **Tests**






Vedantu MATH

Let's get Mathaholic!

>9th >10th >11th >12th >Boards >JEE >Olympiads

Question

If
$$A = \{2, 5\}$$
 $B = \{3, 4, 7\}$ $C = \{3, 4, 8\}$
Prove (i) $A \times (B \cup C) = (A \times B) \cup (A \times G)$
(ii) $(A - B) \times C = (A \times C) - (B \times C)$

Solution
$$(A - B) = \{2, 5\}$$

$$(A - B) \times C = \{2, 5\} \times \{3, 4, 8\}$$

$$(A - B) \times C = (2, 3), (2, 4), (2, 8), (5, 3), (5, 4), (5, 8)$$

Question

If
$$A = \{2, 5\}$$
 $B = \{3, 4, 7\}$ $C = \{3, 4, 8\}$
Prove (i) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
(G1) $(A - B) \times C = (A \times C) - (B \times C)$

Solution

$$A \times C = \{(2, 3), (2, 4), (2, 8), (5, 3), (5, 4), (5, 8)\}$$

 $(A-B) \times C = \{(2,3), (2,4), (2,8), (5,3), (5,4), (5,8)\}$

$$B \times C = \{(3, 3), (3, 4), (3, 8), (4, 3), (4, 4), (4, 8), (7, 3), (7, 4), (7, 8)\}$$

$$(A \times C) - (B \times C) = \{(2, 3) (2, 4) (2, 8), (5, 3), (5, 4), (5, 8)\}$$

